Aluthge transforms of 2-variable weighted shifts

نویسندگان

  • Raúl E. Curto
  • Jasang Yoon
چکیده

We introduce two natural notions of multivariable Aluthge transforms (toral and spherical), and study their basic properties. In the case of 2-variable weighted shifts, we first prove that the toral Aluthge transform does not preserve (joint) hyponormality, in sharp contrast with the 1-variable case. Second, we identify a large class of 2-variable weighted shifts for which hyponormality is preserved under both transforms. Third, we consider whether these Aluthge transforms are norm-continuous. Fourth, we study how the Taylor and Taylor essential spectra of 2-variable weighted shifts behave under the toral and spherical Aluthge transforms; as a special case, we consider the Aluthge transforms of the Drury-Arveson 2-shift. Finally, we briefly discuss the class of spherically quasinormal 2-variable weighted shifts, which are the fixed points for the spherical Aluthge transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toral and spherical Aluthge transforms of 2-variable weighted shifts

We introduce two natural notions of Aluthge transforms (toral and spherical) for 2-variable weighted shifts and study their basic properties. Next, we study the class of spherically quasinormal 2-variable weighted shifts, which are the fixed points for the spherical Aluthge transform. Finally, we briefly discuss the relation between spherically quasinormal and spherically isometric 2-variable w...

متن کامل

A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

متن کامل

Iterated Aluthge Transforms: a Brief Survey

Given an r × r complex matrix T , if T = U |T | is the polar decomposition of T , then the Aluthge transform is defined by ∆ (T ) = |T |U |T |. Let ∆n(T ) denote the n-times iterated Aluthge transform of T , i.e. ∆0(T ) = T and ∆n(T ) = ∆(∆n−1(T )), n ∈ N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the...

متن کامل

The iterated Aluthge transforms of a matrix converge

Given an r × r complex matrix T , if T = U |T | is the polar decomposition of T , then, the Aluthge transform is defined by ∆ (T ) = |T |U |T |. Let ∆n(T ) denote the n-times iterated Aluthge transform of T , i.e. ∆0(T ) = T and ∆n(T ) = ∆(∆n−1(T )), n ∈ N. We prove that the sequence {∆n(T )}n∈N converges for every r × r matrix T . This result was conjecturated by Jung, Ko and Pearcy in 2003. W...

متن کامل

Propagation Phenomena for Hyponormal 2-variable Weighted Shifts

We study the class of hyponormal 2-variable weighted shifts with two consecutive equal weights in the weight sequence of one of the coordinate operators. We show that under natural assumptions on the coordinate operators, the presence of consecutive equal weights leads to horizontal or vertical flatness, in a way that resembles the situation for 1-variable weighted shifts. In 1variable, it is w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016